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A SEARCH FOR WIEFERICH AND WILSON PRIMES 

RICHARD CRANDALL, KARL DILCHER, AND CARL POMERANCE 

ABSTRACT. An odd prime p is called a Wieferich prime if 

2P- 1 1 (mod p2); 

alternatively, a Wilson prime if 

(p - 1)! -1 (mod p2). 

To date, the only known Wieferich primes are p = 1093 and 3511, while the 
only known Wilson primes are p = 5,13, and 563. We report that there exist 
no new Wieferich primes p < 4 x 1012, and no new Wilson primes p < 5 x 108. 
It is elementary that both defining congruences above hold merely (mod p), 
and it is sometimes estimated on heuristic grounds that the "probability" that 
p is Wieferich (independently: that p is Wilson) is about 1/p. We provide 
some statistical data relevant to occurrences of small values of the pertinent 
Fermat and Wilson quotients (mod p). 

0. INTRODUCTION 

Wieferich primes figure strongly in classical treatments of the first case of Fer- 
mat's Last Theorem ("FLT(I)"). For an odd prime p not dividing xyz, Wieferich 
[26] showed that xP + yP + zP 0 implies 2P-1 (mod p2). Accordingly, we say 
that an odd prime p is a Wieferich prime if the Fermat quotient 

qp (2) = -I 
p 

vanishes (mod p). The small Wieferich primes p = 1093 and 3511 have long been 
known. Lehmer [16] established that there exist no other Wieferich primes less 
than 6 x 109, and David Clark [6] recently extended this upper bound to 6.1 x 1010. 
This paper reports extension of the search limit to 4 x 1012, without a single new 
Wieferich prime being found. The authors searched to 2 x 1012. David Bailey used 
some of our techniques (and some machine-dependent techniques of his own; see ?4: 
Machine considerations) to check our runs to 2 x 1012, and to extend the search to 
the stated limit of 4 x 1012. Richard McIntosh likewise verified results over several 
long intervals. 

Wilson's classical theorem, that if p is prime, then (p - 1)! -1 (mod p), and 
Lagrange's converse, that this congruence characterizes the primes, are certainly 
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elegant as a definitive primality test, but are also certainly difficult to render prac- 
tical. Even in the domain of factoring, if arbitrary M! (mod N) were sufficiently 
easy to evaluate, one would be able to take the GCD of such factorials with N 
routinely to produce factors of N. One therefore expects factorial evaluation to be 
problematic. But their difficulty is not the only interesting aspect of factorial eval- 
uations. Indeed, FLT(I) results can be cast in terms of certain binomial coefficients 
and the Wilson quotients 

(p- 1)! + 1 
wp := 

p 
(E. Lehmer [17]) whose vanishing (mod p) signifies the Wilson primes. 

Though our Wieferich search involved successive refinements of one basic algo- 
rithm, namely the standard binary powering ladder, we found that many fascinating 
and disparate options abound for the factorial evaluation. What might be called 
the "straightforward" approach to a Wilson search is simply to accumulate the 
relevant product: set s = 1, then for n = 2 through p - 1, accumulate s := s * n 
(mod p2). This straightforward approach turns out to admit of dramatic enhance- 
ments. By careful selection and testing amongst a wide range of options, we were 
able to extend W. Keller's search limit of 3 x 106 (see Ribenboim [22]), and a limit 
by Gonter and Kundert [13] of 1.88 x 107. Our conclusion is: save p = 5,13, and 
563 there are no Wilson primes less than 5 x 108. Again, Richard McIntosh verified 
our results in various disjoint regions below our search limit. 

1. WIEFERICH PRIMES 

Note the following amusing numerological observation: if the positions of all the 
ones in the binary representation of p lie in arithmetic progression, then p cannot 
be a Wieferich prime. (To see this, note that if p = 1 + 2k + ... + 2(t-1)k - 

(2kt - 1)/(2k - 1), then the exponent that 2 belongs to modulo p is kt, so kt 
divides p - 1. Raising 2kt -1 + p(2k - 1) to the (p - 1)/(kt) power, we see 
that 2P-1 1 + p(2k - l)(p - 1)/(kt) - 1 (mod p2).) Thus the set of Wieferich 
primes cannot contain Fermat primes (p = 10 ... 01 (binary)) or Mersenne primes 
(p = 11 .. . 11 (binary)) or primes such as 

p= 1000000100000010000001000000100000010000001 (binary) 

(see also Ribenboim [21, p.154]). But such special forms are rare indeed, hardly 
affecting any exhaustive search for Wieferich primes. Generally speaking, there 
is no known way to resolve 2P-1 (mod p2), other than through explicit powering 
computations. Let us denote a "straightforward" Wieferich search scheme as one 
in which a standard binary power ladder is employed, with all arithmetic done 
in standard high-precision fashion (mod p2), meaning in particular that standard 
long division (by p2) is employed for the mod operations. In this straightforward 
scheme, intermediate integer results would at times be nearly as large as p4, always 
to be reduced, of course, (mod p2). Beyond this straightforward scheme there exist 
various enhancements, to which we next turn. 

The first enhancement we employed has been used by previous investigators 
(Lehmer [16], Montgomery [19]). This enhancement is useful if the low-level mul- 
tiplication in the computing machinery cannot handle products of magnitude p4. 
The idea is to invoke base-p representations and thereby "split" the multiplication 
of two numbers (mod p2). Let any x = a + bp (mod p2) be represented by {a, b}, 
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with both a, b always reduced (mod p). Then the requisite doubling and squaring 
operations within a standard powering ladder may use the following formulae. We 
use the operation "%p" to denote modular reduction to a residue between 0 and 
p - 1 inclusive, and [] to denote greatest integer part: 

2x = {(2a)%p, (2b + [(2a)/p])op}, 

(1.1) 92 = {(a2)%p, (2ab + [a2/p])%p}. 

For primes p 1012, our machinery benefitted considerably from this base-p 
method. On some machines, in fact, the base-p scheme (1.1) is about twice as 
fast as the straightforward scheme. 

A second, and in practice a telling enhancement, is to invoke what we shall call 
"steady-state" division. In this technique, which exploits the fact that a denomina- 
tor (for example p or p2) is fixed, a divide operation can be performed in roughly 
the same time as a single multiply. The basic idea is described with respect to 
large-integer arithmetic in [8], and was noticed within a floating-point scenario by 
Montgomery [19]. To divide by some N repeatedly, one computes and stores a 
fixed "reciprocal" of N, then uses this systematically to resolve arbitrary values of 
[x/N]. Choose some integer s such that 25 > N2. Then consider, for arbitrary 
0 < x < N2, the quantity 

[2 ] xl (2 _ 
a) X1 x x0l 

L2s L 2s 2 N 2S] 

where 0 < 0 < 1. Clearly, the far right-hand side is either [x/N] or [x/N] - 1. 
The point is, for given N the "reciprocal" [2s/N] need be computed only once. 
And once it is computed, the far left-hand side may be evaluated with a single 
multiplication and a shift. Let ">> s" denote a right-binary-shift by s bits. We 
express the steady-state division arithmetic in the following way: 

Theorem 1. Let 0 < x < N2, and let r = [2s/N], where 2s > N2. Then [x/N] is 
either (rx) >> s or ((rx) ? s) + 1. 

Armed with the base-p arithmetic of (1.1) and with Theorem 1, we may now 
exhibit an efficient pseudocode sequence for the squaring of a representation x = 

{a, b}: 

(1.2) 
(* Assume r = [2s/p], 25 > p2, has been computed once for given p. *) 

b := b *a; 
c := (b * r) >> s; 
b := b-p * c; 
if (b >= p) b:= b-p; 
a := a * a; 
d := (a* r) >> s; 
a := a - p * d; 
if (a>= p) { 

a := a -p; 
d := d+ 1; 

} 
b := c+c+d; 
while (b >= p) b := b - p; 
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After this pseudocode sequence, the pair a, b has become in-place its correct, 
modulo-reduced base-p square. Note that there are no explicit divisions and there 
are six multiplies, though two of the multiplies involve multiplication of the recip- 
rocal r, which is the size of p, by a number the size of p2. Again, the magnitude of 
the speed advantage of (1.2) over a straightforward scheme is machine-dependent. 

A third enhancement runs as follows. In Theorem 1, the term (rx) >> s can 
be obtained using a nonstandard multiplication loop. Observe that, though x will 
be the size of N2 (the steady-state denominator) and r the size of N, a count 
of s bits will be lost after the right-shift. This means that in the "grammar- 
school parallelogram'? generated during long multiplication, many of the entries 
are meaningless, because they will be shifted into oblivion. By intervening in a 
detailed manner into the usual long multiplication loop, the value (rx) >> s can 
be obtained in about half the time it takes to multiply two integers the size of N. 
We achieved in this way a complete base-p square-and-mod sequence of the form 
(1.2), that requires about five (size of p) multiply times. 

The cumulative advantage of all these various enhancements, compared to the 
straigthtforward scheme and depending, of course, on the computing machinery 
used, was typically an order of magnitude in speed increase. Some timing details 
are given in ?4. 

The nature of the powering ladder arithmetic is not the only issue, because one 
wishes to test only actual primes p. The tempting Fermat test, that is whether 
2p-1 =_ 1 (mod p), is generally wasteful for a Wieferich search. For one thing, 
one may as well always do the (mod p2) arithmetic, which of course contains the 
Fermat test. We found the most efficient scheme for isolation of testable primes to 
be an incremental sieve of Eratosthenes. If we are interested in all primes p < L, 
we segment all integers less than L into blocks of common size B, say B = 106. 

Then each new block is sieved completely, by all primes < V4, so that only primes 
remain within that block. At any time only one block equivalent of memory is 
involved, because for the current block we can quickly compute the sieving offsets 
for each sieving prime, then sieve rapidly. Our overall algorithm for the Wieferich 
prime search can be described thus: 

ALGORITHM FOR WIEFERICH PRIME SEARCH 

1) For search limit L, store all.primes less than,vIE. 
2) For each successive block of length B, 

3) Sieve out, using the stored primes, all composites from the current block, 
4) For each remaining prime p in the block, 

5) Choose s > 210g2p, and compute the "reciprocal" r = [2s/p], 
6) Starting with representation {2, 0} in a binary powering ladder, use 

possible machine-dependent enhancements (such as (1.1), (1.2), The- 
orem 1) to obtain a final base-p form 2(P-1)/2 (mod p2) = {C, D}. 

7) If C is neither 1 nor p - 1, exit with fatal error. Otherwise, report 
any desired D-values. A Wieferich prime must have {C, D} = {1, 0} 
or {p - 1,p - 1}. 

In this way we eventually recorded all instances of 

1)/2 ?1 + Ap (mod p2), 
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TABLE 1. Instances of 2( _ P + Ap (mod p2), with JAI < 
100, for 109 < p < 4 x 1012. The value A = 0 would signify a 
Wieferich prime 

p ?1+Ap p ?1 +Ap 
1222336487 +1 + 60p 36673326289 +1 - 45p 
1259662487 +1 - 71p 46262476201 +1 + 5p 
1274153897 +1 - 86p 47004625957 -1 + lp 
1494408397 -1 + 52p 49819566449 +1 + 27p 
1584392531 -1 - 24p 53359191887 +1 + 50p 
1586651309 -1 - 24p 58481216789 -1 + 5p 
1662410923 -1 - 70p 76843523891 -1 + lp 
1817972423 +1 - 56p 82834772291 -1 + 82p 
1890830857 +1+ 69p 108058158839 +1+ 58p 
2062661389 -1 + 55p 130861186019 -1 - 97p 
2244893621 -1+ 47p 138528575509 -1- 23p 
2332252547 -1 - 33p 239398882511 +1 - 72p 
2416644757 -1+ 67p 252074060191 +1+ 61p 
2461090421 -1+ 47p 252137567497 +1- 31p 
2566816313 +1 + 52p 299948374351 +1 - 19p 
2570948153 +1- 41p 405897532891 -1+ 61p 
2589186937 +1 - 85p 443168739911 +1 + 64p 
2709711233 +1l+ 50p 504568016327 +1+ 55p 
2760945133 -1 - 77p 703781283787 -1 - 49p 
2954547209 +1 + 32p 955840782881 +1 - 84p 
3027263587 -1 - 95p 980377925057 +1 - 9Op 
3133652447 +1+ 87p 981086885117 -1+ 85p 
3303616961 +1- 20p 1095406033573 -1+ 42p 
3520624567 +1 - 6p 1104406423781 -1 + 54p 
3606693551 +1+ 21p 1180032105761 +11- 6p 
4449676157 -1- 15p 1722721869859 -1- 31p 
5045920247 +1 + 76p 1730418792409 +1 - 46p 
5409537149 -1 + 66p 1780536689159 +1 + 84p 
8843450093 -1 - 20p 2207775149407 +1- 99p 
10048450537 +1 + 82p 2424653846701 -1 - 51p 
10329891503 +1 + 79p 2610372685663 +1- 28p 
11214704947 -1+ 56p 3667691800441 +1+ 27p 
20051397221 -1 - 46p 3713054321579 -1 - 51p 
20366156849 +1 - 95p 3729819224423 +1 + 77p 

where A is allowed to be bipolar but JAI < 100, over the primes less than 4 x 1012. 

Note that A is essentially the Fermat quotient; or more precisely, 

qp(2) _t ?2A (mod p). 

Table 1 shows all primes between 109 and 4 x 1012 that enjoy the small JAI 
values. In ?3 we discuss some statistical considerations pertinent to these and some 
analogous data for the Wilson quotients. 

The large-integer arithmetic mentioned above is discussed in [9] and [10]. Except 
for some of our more obscure algorithmic enhancements, relevant code (giants. 
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[ch]) is stored on the disk supplement of [9]; it can also be obained over the World- 
Wide Web at ftp://ftp.telospub.com in the directory 

/pub/ScientificComputing/TopicsAdvSciComp/AppendixCode. 
The book [10] specifically deals with computational issues related to the Wieferich 
and Wilson searches. 

2. WILSON PRIMES 

During factorial calculations all arithmetic (mod p2) is subject to possible re- 
finements of the previous section. In particular, base-p arithmetic is appropriate on 
most machines. But for the current range of interest, namely p on the order of 108, 
most modern machinery allows low-level arithmetic (mod p) or efficient long-long 
(double-precision) arithmetic, so the steady-state division of Theorem 1 need not 
apply (though that theorem becomes useful for much larger p). These arithmetic 
issues having been settled, we proceeded to analyze various theoretical relations 
with a view to minimization of computation time. 

A useful and interesting identity is due to Granville [14]; for any integer m with 
1 < m < p, we have 

(2.1) mi.-ti1 ("fi-i1) _(_1)(P-l)(ml)/2(mP - m 1) (modp2). 

This congruence for m = 2 was known in the nineteenth century and has been 
rediscovered a few times since; for m = 3, 4, 6 the congruence follows from (50), 
(51), (52) in [17]. For example, (50) in [17] is the congruence 

(2.2) (- I=(_1)[P/3](3P-1)/2 (modp2) 

for all primes p > 3, which when squared gives (2.1) for m = 3. 
Granville's identity for m = 2 shows right off that one never need evaluate 

the full factorial of p - 1, but may evaluate the factorial of (p - 1)/2 instead. A 
different kind of identity, when combined with (2.1), yields a considerable algorithm 
enhancement. Consider the representation of certain primes p by quadratic forms: 

(2.3) p (mod 4): p=a2 +b2; a '1 (mod 4) 

p~l _1(mod 3): 4p = c2 + 27d2; c 1 (mod 3) 

p-1 (mod 3): 4p = U2 + 3v2; u (-1)(P-l)/6 (mod 3), 

v 0 (mod 6) if possible, 

v-?1 (mod 6) if not. 

It is known (see [3], [5], [11] , and also [7], [28]) that for p 1_ (mod 4), 

(2.4) p2__ (2P1 + 1) (a-P ) (mod p2), 

and that for p 1 (mod 3), 

(2.5) (ip3 2 -c+?- (mod p) ( - (2P+) (modp 
3 6~C 

The results (2.1)-(2.5) can be combined in various ways to yield the following 
identities, one of which is always applicable to a given odd prime p: 
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For p 1 (mod 3), we use (2.2) and (2.5) to get 

(2.6) (p-1)!=_ I (-, 3(2P-1)+3pu )-c+ 2 (modp2). 

In (2.6) it is possible to ignore the condition on v in (2.3) since the different 
values of u produced have -u3(2P - 1) + 3pu _ constant (mod p2). 

For p -5 (mod 12), we use (2.1) with m = 2 and (2.4) to get 

(p -1)! _ 4( 1! (2P -1)(2P-1 + 1)2 (a- P ) (mod p2), 

so that, 

(2.7) (p-i)!_ ((P 1)!) (3-2P-4)(2a2-p) (modp2). 

For p 11 (mod 12), we use (2.1) with m = 2 to get 

(2.8) (P -1)!-((2 )! (1- 2P) (mod p2). 

So expensive are the relevant factorial calculations in practice, that one may with 
impunity ignore fast methods and obtain any of a, b, c, d, u, v by "brute force"; say, 
by looping through squares a2, c2, or u2. Ignoring the relatively inconsequential 
operations of powering, inverting, and extraction of a, b, c, d, u, or v, the identities 
(2.6)-(2.8) involve, for p -1 (mod 3), p _ 5 (mod 12), p 11 (mod 12), respec- 
tively, about 

p/6, p/4, p/2 

multiplies (mod p2), amounting to an average reduction, over many primes, of 
48/13 in complexity, as compared to the naive evaluation of (p - 1)!. As we shall 
see presently, complexity reduction may be taken further. 

An algebraic refinement is to observe that the multiplicands comprising an ar- 
bitrary N! generally admit of a certain redundancy. For example, all the even 
multiplicands can be extracted and written in the form of some power of 2 times 
a smaller factorial. We start our analysis of what might be called factorial sieving, 
by defining a generalized factorial: 

m q-1 m 

(2.9) P(q, m)= rl k= II I| j. 
k=1 k=1 j=1 

(k,q)=1 (k,q)=1 j/k (mod q) 

For example, P(1, m) = m! and for m odd, P(2, m) = m!!, the product of the odd 
numbers up to m. Now our previous statement concerning the even multiplicands 
of N!, can be written, for N even, as 

(2.10) N! = 2Nf/2P(2, N) (Ni)! 

FRom this identity N! can actually be evaluated in about 3N/4 multiplications. 
One multiplies together the even integers < N/2, then the odd integers < N/2, 
squares the latter; then multiplies everything by all odd integers in (N/2, N]. But 



440 RICHARD CRANDALL, KARL DILCHER, AND CARL POMERANCE 

more can be done along these lines. For example, iterating (2.10) one gets the 
identity 

(2.11) N! = 2e2IJ P (2P[2 ) 

where 2e2 IN! and the apparent infinite product may be truncated as soon as 
2i > N/3. The identity (2.11) allows the computation of N! in (1/2 + o(l))N 
multiplications. 

There are some interesting theoretical branches to take at this point. One ap- 
proach is to generalize (2.10) and (2.11) by sieving the factorial with, say, all primes 
p < R. This idea leads to the following general identity: 

N / Nl 
(2.12) N! J eI P 7J p (r) I-I) 

p<R q is R-smooth L q 

where pep IN!, 7r is the product of all primes not exceeding R, and the q are R- 
smooth, i.e., not divisible by any prime exceeding R. We have found this formula 
difficult to use in practice. As just one extra complication, one must find all R- 
smooth numbers not exceeding N. However, this general factorial-sieve identity 
may find use in theoretical treatments of factorial complexity. For example, choos- 
ing R = Nl/lnlnNN it can be shown that (2.12) allows the computation of N! in 
O(N/ ln ln N) multiplications. 

A different approach is to partially recurse on some fixed set of sieve identities. 
By experimentation, the most pragmatic identity which we could find takes R = 3 in 
(2.12), but does not use the full recursion over all 3-smooth numbers. In particular, 
when N _ 0 (mod 6912) we have 

N! 255N 185N N 
(2.13) N! = 2 256 3 432 (2s6)! P(2,! ) JP (6,! ), 

where w runs through the set {16,18,24,27,32,36,64,128} and v runs through the set 
{1,2,3,4,6,8,9,12}. Analysis of the P products reveals that, on the basis of (2.13), 
one may evaluate N! by way of an asymptotic count of (283/768)N multiplies. 

Regardless of what factorial reduction formulae are in force, there is a powerful, 
universal enhancement that removes most of the multiplication in favor of addition. 
It may be observed that any product of interest in our previous identities can be 
cast as a product of the products of the terms in disjoint arithmetic progressions. 
For example, P(q, m) by its definition (2.9) is manifestly such a product. Thus, if 
we can implement an algorithm for rapid evaluation of the product of terms in an 
arithmetic progression, we can call such a routine as desired. Happily there exists 
a suitable such algorithm, which will evaluate any product of n terms in arithmetic 
progression in 0(nr+?) multiplies, where = (v5 - 1)/2 is the "golden ratio", and 
n + 0(n 3-+E) adds. For the Wilson search, it is understood that mods must also 
be taken. However, since the number of adds will generally far exceed the number 
of multiplies, most of the mod operations involve only "if' statements and their 
ensuing subtractions. 

An algorithm for evaluating a polynomial along arithmetic progression values 
is given in [15, p. 469], and uses the fact that if enough successive differences 
are taken, the difference tableau suffices to determine the required values of the 
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polynomial. We express here, for the purposes of the Wilson search, a particular 
variant that yields the product of all terms in arithmetic progression: 

ALGORITHM TO EVALUATE THE PRODUCT OF TERMS 
IN ARITHMETIC PROGRESSION 

To evaluate 

f (x) = x(x + d)(x + 2d) ...(x + (n-)d). 

at a given point x: 

1) Choose G < n (an optimal choice of G is discussed later) and set K := [ -1. 
2) Create ao through aG: 

For j = 0 to G 

G-1 

aj := rf(x+ (q+Gj)d) 
q=O 

3) Create difference tableau: 

For q = 1 to G { 
For j = G down to q 

a a := aj -aj 

} 
4) Manipulate differences and accumulate: 

f := aO 
For j = 1 to K { 

aO := aO + ai 
f = fao 
For q = 1 to G - 1 

aq := aq + aq+1 
} 

5) Finish tail end of product: 

n-I 

f:=f fJ (x+ jd). 
j=G(K+l) 

For investigations such as the Wilson search, all sums, differences and products are 
to be reduced (mod p2); whence the final output f will be the desired product of 
arithmetic progression terms, that is f (x) (mod p2). If base-p arithmetic is used, 
all of the arithmetic is to be performed in its natural way amongst representations; 
thus for example each of the initial aj will be a representation pair. 

Analysis shows that the algorithm requires O(G2+n/G) multiplies and n+O(G2) 
adds. The optimal G is thus in the neighborhood of nl /3, yielding 0(n2/3) multiplies 
and n + 0(n2/3) adds. But the algorithm's step (2) itself involves products of 
arithmetic progression terms. One may thus recurse on step (2), embedding the 
algorithm within itself to render ultimately the aforementioned operation count 
of Q(n+k?) multiplies and n + 0(n 3 e-+,) adds. However, we found in practice 
that not even the first recursive level is really necessary. For primes p 108, the 
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basic algorithm without recursion already has a total multiply count more than two 
orders of magnitude below the add count. 

Armed with these various refinements, we arrived at the following practical al- 
gorithm: 

ALGORITHM FOR WILSON PRIME SEARCH 

1) For search limit L, store all primes less than \/IT. 
2) For each successive block of length B, 

3) Sieve out, using the stored primes, all composites from the current block, 
4) For each remaining prime p in the block, 

5) As p 1_ (mod 3), p -5 (mod 12), p _ 11 (mod 12) adopt one of 
the identities (2.6)-(2.8). If p is not 11 (mod 12) obtain any required 
quadratic elements a, b, c, d, u, v. 

6) Use a factorial sieve such as (2.13) together with successive arithmetic 
progression products for the P product terms. In this way obtain a 
final base-p representation for (p - 1)! = {C, D}. 

7) If C is not p - 1, exit with fatal error. Otherwise, report any desired 
D-values. A Wilson prime must have {C, D} = {p - 1,p -1}. 

In this way we eventually recorded all instances of 

(p -1)! =_ (p -1) + p(p -1- B) (mod p 2), 

where 0 < B < 100, over the primes less than 5 x 108. Note that B is essentially 
the Wilson quotient; or more precisely, 

wp _-B (mod p). 

Table 2 shows all primes between 107 and 5 x 108 that admit of such small B values. 
Incidental to our search effort, we noted some alternative factorial evaluation 

schemes. Because of their theoretical attraction we shall briefly mention these 
alternatives, though for the p-ranges of the reported search we were unable to bring 
any of these alternatives up to the execution speed of the arithmetic progression 
algorithm written out above. 

We implemented a recursive polynomial remaindering scheme for factorials; this 
method requiring no worse than 0(p1/2 (inp)2) arithmetic operations to resolve the 
Wilson quotient. The idea is to evaluate a polynomial of degree m, namely: 

f (x) = (x + 1)(x + 2) ..(x + m), 

at the m points x = 0, m, 2m, . . . , (m - 1)m and multiply together all of these 
evaluations to yield (m2)!. This polynomial evaluation problem is known to require 
no more than O(m(lnm)2) arithmetic operations [4], [20], [23]. For m a power of 
two, the recursion proceeds as follows. Define polynomials each of degree m/2: 

go(x) = x(x - m)(x - 2m) ... (x - (m/2 - )m), 

gi(x) = (x - (m/2)m)(x - (m/2 + I)m) ... (x - (m - I)m). 

Then it is immediate that (Mi2)! is the product of the evaluations of f(x) (mod 
go(x)) at the zeros of go, times the product of the evaluations of f(x) (mod gi (x)) 
at the zeros of gl. But each of the two reduced polynomials f(x) (mod gi (x)) can 
be evaluated in the same way, modulo appropriate members of a set of four degree- 
m/4 polynomials, and so on recursively. The recursion hits bottom at a chosen level 
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TABLE 2. Instances of (p-i1)! -i-Bp (mod p2), with 0 < B < 
100, for 107 < p < 5 x 108. The value B = 0 would signify a 
Wilson prime 

p -1-Bp 
10746881 -1 - 7p 
11465149 -1- 62p 
11512541 -1 - 26p 
11892977 -1 - 7p 
12632117 -1- 27p 
12893203 -1 - 53p 
19344553 -1- 93p 
21561013 -1 - 9Op 
27783521 -1 - 51p 
39198017 -1 - 7p 
45920923 -1 - 63p 
53188379 -1 - 54p 
56151923 -1 - p 
57526411 -1 - 66p 
72818227 -1- 27p 
87467099 -1 - 2p 
91926437 -1- 32p 
93445061 -1 - 30p 
93559087 -1 - 3p 
94510219 -1- 69p 
101710369 -1 - 70p 
117385529 -1 - 43p 
212911781 -1- 92p 
216331463 -1 - 36p 
327357841 -1- 62p 
411237857 -1- 84p 
479163953 -1 - 50p 

for which direct evaluation, say by Horner's rule, of the current reduced polynomials 
proceeds efficiently. 

In our implementation, we used polynomials of degree about (p/k)1!2, where k is 
an appropriate integer gleaned from the reduction formulae (2.6)-(2.8). Each coeffi- 
cient of each polynomial was a base-p representation. The polynomial remaindering 
used a Newton method for polynomial inversion, with large polynomial multiplica- 
tion performed by way of a Nussbaumer convolution scheme in which signal array 
elements are base-p representations. The resulting experiments showed that, in- 
deed, the arithmetic scheme is bested by this remaindering scheme for sufficiently 
large p. Our implementation of the remaindering scheme begins to be superior in 
speed for p in the neighborhood of 1011. Though remaindering did not apply over 
our stated Wilson search region, we were able to use that scheme to resolve isolated, 
huge factorials. For example, for p = 1099511628401 (= 240 + 54), we calculated 

(p - 1)! _-1 - 533091778023p (mod p2). 
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To our knowledge this is the largest prime for which the Wilson quotient is known 
(mod p); and also the largest integer to have been proven prime, as we have, on the 
basis of Lagrange's converse of Wilson's classical theorem. We believe that, given 
the computing machinery of today and the favorable asymptotic complexity of the 
remaindering algorithm, such calculations for p as high as 1020 are not out of the 
question. 

Another scheme for Wilson testing was proposed to us by J. P. Buhler, and is 
one of two Wilson tests we noted that involve identities merely (mod p). For g a 
primitive root of an odd prime p, denote by {ak, bk} the base-p representation of 
gk (mod p2). Then 

p-1 p-1 

(p-i)! =]J| ak (g Pbk) (mod p2) 
k=1 k=1 

_ 
2 p E bkapl-k) _-1 +p E bkap-1-k (mod p2) 

k=1 k=1 

which establishes 

Theorem 2. Let p be an odd prime possessed of a primitive root g. Then the 
Wilson quotient satisfies 

Wp = E g 
] gp-lk (mod p). 

It is interesting that the Fermat quotient qp(g) associated with the Wieferich 
problem appears in the theorem, in the guise of the final summand. At first glance 
the convolution in Theorem 2 appears to require at least O(p) multiplies. This is 
not so in general; in fact we found means by which Theorem 2 may be applied 
with no multiplies, and O(pin g) adds. The main idea is to think of the sum in the 
theorem as a polynomial in g, and invoke Horner's evaluation rule. We give here 
the surprisingly simple pseudocode loop in the case that g = 2 happens to be a 
primitive root: 

(* Assume 2 is a primitive root of the prime p.*) 
a = 1; 
b =s = 0; 
loopt 

a a + a; 
b :=b +b; 
if(a >=P) { 

a:= a - p; 
b :=b+1; 

} 
if (b >= p) b:= b-p; 
s := s + s + b; 
while(s >= p) s:= s - p; 
if(a == 1) break; 

} 
(* p is a Wilson prime if and only if s=0O. *) 
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Note that this pseudocode contains no multiplies and uses negligible memory. 
When 2 is not a primitive root, one may replace the various doubling steps in the 
loop with binary addition ladders to effect multiplication by g > 2. In spite of 
its extreme simplicity, this scheme still could not be made competitive with the 
arithmetic progression scheme. The basic reason for this failure is that the factorial 
schemes starting from (2.6)-(2.8) involve immediate reduction of the factorial term 
count, whereas we do not yet know any means by which the number of summands 
in Theorem 2 can be similarly reduced: 

During attempts to reorder factorial products we found a second mere (mod p) 
algorithm, which we believe to' be new, and which is expressed as follows. 

Theorem 3. For an odd prime p and any integer q with 1 < q < p, denote by 
(1/p)q the unique inverse of p (mod q) lying in [1, q - 1]. Then p is a Wilson prime 
if and only if 

E = -1 (mod p). 

This theorem follows immediately upon the observation that the product of terms 
(p(1/p)q - 1)/q, over all q in the stated range, happens to be (p - 2)!. 

Theorem 3 has so far been difficult to render practical. However, if sufficient 
memory is available, one might consider storing tables of inverses (mod q) for many 
small primes q, and attempting to reconstruct the required terms (1/p)q rapidly. In 
addition, there is the possibility of parallelism. One could perhaps evaluate quickly 
sets of inverse terms for many primes p at once. 

Finally, we mention the beautiful relation between Bernoulli numbers and the 
Wilson quotients due to N. G. W. H. Beeger [2]: 

pBp-1 p- 1 + pwp (mod p2). 

It is interesting that Beeger actually used his congruence and a table of Bernoulli 
numbers to show that 5 and 13 are the only Wilson primes up to 113. 

We have observed that the left-hand side of the Beeger congruence can be eval- 
uated via polynomial algebra (mod p2). The somewhat intricate polynomial ma- 
nipulations can be summarized briefly, as follows. First, note that upon formal 
series expansion of 

2x sinh x -x2 

2(cosh x -1) 

in even powers of x, the coefficient of xn is (n + 1)Bn/n!. Define a coefficient Tp- 
implicitly by 

1 + E(p-3)/2 2x2k/(2k + 1)! 

1 + (Lp3=)/2 2x2k/(2k + 2)! 

= 1 + ***+ Tpxp-l + O(xP+1), 

Note that the k-dependent factorials can all be inverted (mod p2), so that Tp-1 
can be calculated unambiguously via polynomial division (mod p2). Now, to obtain 
the desired coefficient pBp1/l(p - 1)!, which is not quite Tp-1, the latter must be 
corrected on the basis of the missing (k = (p - 1)/2) terms, the result being: 

pBp_j-=Tp_j(p-1)! + 2-2p (mod p2). 
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In this way Wilson quotients can be obtained via power series manipulation 
(mod p2). We are aware that the multiplier (p - 1)! in this last relation gives 
the appearance of recourse, as do the factorials that enter into the evaluation of the 
hyperbolic polynomials. But we cannot yet rule out the possibility of a polynomial 
algorithm that does not involve recourse to factorials (for example, there are other, 
nonhyperbolic expansions involving Bernoulli numbers [10]). Such an algorithm 
might yield entirely new means for rapid evaluation of Wilson quotients. 

In a converse spirit, we note that the Beeger congruence, together with Theorem 
2, gives a clear, simple, multiply-free algorithm for evaluation of pBp-l (mod p2). 

This algorithm involves O(p lng) adds and, as we have seen, is especially efficient 
when g = 2 is the primitive root. 

3. STATISTICAL CONSIDERATIONS 

Are there infinitely many Wieferich primes, or any larger than 3511? Is 563 the 
last Wilson prime? Since A = A(p) is an integer in the interval (-p/2,p/2), one 
might view the "probability" of A assuming any particular value, say the value 0, 
to be i/p. And one might view experiments for different primes p as "independent" 
events. Thus, heuristically we might argue that the number of Wieferich primes in 
an interval [x, y] is expected to be 

S 1/p ln(ln y/ln x). 

If this is the case, we would only expect to find one Wieferich prime above Lehmer's 
search bound of 6 x 109 and below 3.8 x 1026. It is thus not too shocking that no new 
instances occur below 4 x 1012. A similar heuristic suggests that there should be 
just one Wilson prime above the search limit 1.88 x 107 of [13] and below 5.9 x 1019. 
Again it is no surprise that we did not find any new Wilson primes. (The "expected" 
number of Wieferich primes in our Wieferich search interval was about 0.25, and 
the "expected" number of Wilson primes in our Wilson search interval was about 
0.18, so it was not a priori completely hopeless to embark upon such a search.) 

However, we did find some "near" Wieferich and Wilson primes, where, respec- 
tively, the A-values and B-values are small. Tables 1 and 2 -show all instances 
of small-magnitude even Fermat quotients, and small-negative Wilson quotients; 
more precisely, all occurrences of 0 < JAI, B < 100 over the stated search regions. 
One might test the heuristic model above with the actual evidence. The "expected" 
number of primes p in [109, 4 x 1012] with JAI < 100 is 201 ln(ln(4 x 1012)/ ln(109)) 
67.7. In fact we found exactly 68 such near Wieferich primes p, a very close fit in- 
deed. The "expected" number of primes p in [107, 5 x 108] with B-value satisfying 
0 < B < 100 is 101 ln(ln(5 x 108)/ ln(107)) 21.9. In fact we found exactly 27 near 
Wilson primes in the interval. 

4. MACHINE CONSIDERATIONS 

For our Wieferich and Wilson searches, we used various 32-bit processors, such 
as 68040, 486/586, HP7000, SPARC, and i860. (We inspected the software for 
the infamous, sometimes faulty "fdiv" instruction on 586 Pentium; and finding 
one occurrence of that instruction, we double checked all of the relevant primes.) 
Typically, every individual machine would handle all the primes in some partic- 
ular region. We allowed each machine to set up its own, equivalent incremental 
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sieve over that machine's region of responsibility, since this was not too wasteful. 
Under the algorithm of ?1, such 32-bit processors sustained Wieferich test rates 
of approximately 100 to 1000 primes per second per machine, in the p 1012 re- 
gion. We have noted already that the straightforward scheme (size p4 products and 
long divide) to obtain Fermat quotients runs about ten times slower. With the aid 
of Richard McIntosh we tested the base-p arithmetic on a 64-bit (DEC) machine 
that allowed low-level divide/mod, finding that such a machine can sustain close to 
10,000 primes per second in the stated region. Bailey's computations, as mentioned 
in ?1, were performed on an IBM SP-2 parallel computer at NASA Ames Research 
Center, utilizing otherwise idle machine cycles. Each of his one hundred individual 
machines worked with its own set of primes, performing arithmetic in our base-p 
fashion. For the base-.p arithmetic, Bailey used floating-point double precision (64- 
bit) arithmetic, including clever use of "floating multiply-add" operations, which on 
the IBM RS6000/590 processors maintain internal 106-bit accuracy. The resulting 
code achieved an impressive sustained testing rate of over one million primes per 
second. 

The Wilson search proceeded, after all the refinements noted in the arithmetic 
progression based algorithm, at processor-dependent rates between 1/20 and 1/2 
prime per second, in the p 108 region. That the fastest 32-bit machines would re- 
quire several seconds to resolve the Wilson quotient for a single p near 100 million is 
not unimpressive when one considers that the straightforward multiply-accumulate- 
(mod p2) method, with multi-precision division also assumed, would require the 
equivalent of perhaps 109 size p multiplies. In fact the straightforward method is 
roughly 100 times slower than the rate we achieved. The polynomial remaindering 
scheme, which dominates for p > 1011, is roughly ten times faster than our arith- 
metic progression based scheme for p in the region of 1012. Nevertheless, using 
polynomial remaindering, it still took a SPARC processor about one day to resolve 
the Wilson quotient of p = 1099511628401 (see ?3). 

5. RELATED SEARCHES 

In the absence of future theoretical results, one is moved to attach the probability 
i/p also to certain other properties (mod p2). What might be called Wall-Sun-Sun 
primes (see [25] and [24]) are those p > 5 satisfying 

(4.1) Fp(p)-O (mod p2), 

where Fn is the nth Fibonacci number. This congruence is, again, always satisfied 
merely (mod p). Williams [27] found no Wall-Sun-Sun primes whatsoever, below 
109, and Montgomery [19] extended this to 232. On the basis of a search being 
conducted by R. McIntosh [18], we have learned that there exist no Wall-Sun-Sun 
primes less than 2 x 1012. Beyond the i/p statistics, it is of interest that, as Sun 
and Sun [24] proved, if p is a failing exponent in FLT(I), then p satisfies (4.1). 

There are Wieferich composites, namely composite integers N such that 

2Vff= 1 (mod N2), 

where so is Euler's function, see [1]. (For N odd, the left side is always 1 (mod N).) 
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For example, 3279 (= 3 x 1093) is such a number N. This congruence is one way 
to generalize the Wieferich prime definition. Another is the weaker condition that 
(N, (21 - 1)/N) > 1, where I is the least positive integer with N dividing 21 - 1. 
For this latter generalization it has been shown in [12], perhaps surprisingly, that 
asymptotically all odd numbers N are Wieferich. 

Finally, there are the Wilson composites, being composite N such that 
N 

P(N,N)= J7 j-=?1 (mod N2). 
j=1 

(j,N)=1 

This congruence is one way to generalize the Wilson prime definition. Analysis 
and search is underway for such composites [1]. We were able to offer aid to that 
project, by using the factorial sieve and arithmetic progression based algorithms of 
?2 to calculate P(N, N) rapidly, finding the new instances N = 558771, 1964215, 
8121909 and 12326713. For example, the product of all positive integers less than 
and coprime to 12326713 is 1 (mod 123267132). 
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